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Abstract: The presence of rare but highly tumorigenic cancer stem cells (CSCs) within the tumors is 
recognized as one of the major reasons of failure of conventional chemotherapies, mainly attributed 
to the development of drug resistance and increasing metastatic potential. Here, we propose a 
therapeutic strategy based on the simultaneous delivery of docetaxel (DTX) and the photosensitizer 
meso-tetraphenyl chlorine disulfonate (TPCS2a) using hyaluronic acid (HA) coated polymeric 
nanoparticles (HA-NPs) for the targeting and killing of CD44 over-expressing breast cancer (BC) 
cells, both differentiated and CSCs (CD44high/CD24low population), thus combining chemotherapy 
and photodynamic therapy (PDT). Using the CD44high MDA-MB-231 and the CD44low MCF-7 cells, 
we demonstrated the occurrence of CD44-mediated uptake of HA-NPs both in monolayers and 
mammosphere cultures enriched in CSCs. Cell treatments showed that combination therapy using 
co-loaded NPs (HA@DTX/TPCS2a-NPs) had superior efficacy over monotherapies (HA@DTX-NPs 
or HA@TPCS2a-NPs) in reducing the self-renewal capacity, measured as mammosphere formation 
efficiency, and in eradicating the CSC population evaluated with aldehyde dehydrogenase activity 
assay and CD44/CD24 immunostaining. In summary, these in vitro studies demonstrated for the 
first time the potential of the combination of DTX-chemotherapy and TPCS2a-PDT for killing CSCs 
using properly designed NPs. 

Keywords: photodynamic therapy; chemotherapy; combination therapy; cancer stem cells; targeted 
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1. Introduction 

The complex physiology of tumor tissues, the coexistence of cell subpopulations with distinct 
phenotypes, and the development of intrinsic/acquired drug resistance are some of the causes of 
failure of conventional cancer therapies. In tumors, a large fraction of differentiated cells coexist with 
a small fraction of cancer stem cells (CSCs) that, similarly to normal stem cells, have the capability of 
self-renewal and differentiation into phenotypically diverse cancer cells [1]. CSCs are highly 
tumorigenic and drive cancer initiation, progression, recurrence, and metastasis in a wide panel of 
tumor types, including breast cancers (BC). In fact, accumulating evidence has led to the concept of 
BC as a disease of BCSCs since the plasticity of BCSCs plays a pivotal role in determining the 
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evolution and the prognosis of the disease [2]. It is also clear that the concomitant killing of 
differentiated cells and targeting/killing of CSCs must be the driving goals in developing new 
therapeutic strategies aiming at assuring long-lasting disease remission and long-term survival of BC 
patients. 

Currently, some clinical protocols are based on the administration of multiple drugs in a single 
cocktail or in separated doses as well as the combination of different treatment modalities [3]. Among 
clinically approved cancer therapies, photodynamic therapy (PDT) is a compelling curative treatment 
for several solid tumors, able to efficiently reduce bulky cancer masses [4]. PDT is based on three 
intrinsically non-toxic components that exert cytotoxicity only when combined together. These are a 
photosensitizer (PS), visible light, and molecular oxygen. The PS activation with appropriate 
wavelengths of light stimulates the production of highly reactive oxygen species (ROS), mainly 
singlet oxygen (1O2), that cause localized oxidative stress, cell death, and activation of immunological 
and inflammatory responses in the treated tissue [5]. In comparison to conventional cancer 
treatments, PDT is selective because: (i) Owing to limited diffusion in the tissues of the produced 
ROS, the oxidative damage is restricted to the sites of PS localization in the tumor; (ii) light is 
delivered exclusively to desired areas using optical fibers; (iii) the PSs localize and are retained 
mainly in neoplastic lesions, especially if delivered as proteins/peptide-conjugates [6,7] or loaded in 
properly engineered nanoparticles (NPs) [8]. In recent years, it has been reported that the 
combination of PDT with chemotherapy produced superior therapeutic efficacy over mono-
therapies, in several cancer cell lines in vitro and in in vivo tumor models, including BC [9–12]. In 
addition, several studies highlighted that the therapeutic effects of the combined treatment is further 
improved if the chemotherapeutic and PS are co-encapsulated in nanometric delivery systems [13–
15]. In line with these observations, we have recently reported the successful synergic killing of 
docetaxel (DTX)-sensitive and -resistant cancer cells in vitro [16], using biodegradable hyaluronic 
acid (HA)-decorated double-layered NPs co-loaded with DTX [17] and the PS meso-tetraphenyl 
chlorine disulfonate (TPCS2a) [18]. NPs were conceived in order to: (i) Transport the hydrophobic 
DTX in the inner poly (D,L-lactide-co-glycolide) (PLGA) core; (ii) favor electrostatic association of the 
amphiphilic PS to a positively charged polyethyleneimine (PEI) layer covering the core; (iii) exploit 
active targeting, via the HA receptor CD44 over-expressed on cancer cells, covering the NP surface 
with a layer of HA [19]; (iv) guarantee synergic interaction of the transported drugs through the easy 
modification of drug ratio inside NPs [20]. In combination therapies, the drug ratio is a crucial factor 
for obtaining synergism, but in previous work, we were able to synergistically kill CD44-
overexpressing cervix cancer HeLa and triple negative BC MDA-MB-231 cells by loading NPs with 
an optimized DTX:TPCS2a ratio that significantly improved treatment efficacy with respect to 
combination of chemotherapy and PDT using free drug formulations. The improvement was 
particularly important with DTX-resistant cells. Based on these results and on evidence that BCSCs 
eradication is particularly difficult because of slow proliferation rate, low sensitivity to antimitotic 
agents, and over-expression of different membrane efflux pumps causing resistance to chemotherapy 
[21], we made the hypothesis that it might be possible to increase the killing of BCSCs with the 
combination of DTX-chemotherapy and TPCS2a-PDT using HA-covered NPs for the targeting of 
BCSCs in addition to differentiated BC cells. In principle, the antimitotic DTX should be active against 
the bulky population of fast-proliferating cells while TPCS2a-mediated PDT should be equally 
effective toward fast-proliferating and slow-proliferating BCSCs. Furthermore, the killing of BCSC 
might be potentiated by CD44 targeting through HA engrafted on NP surface, since BCSC population 
is given by cells with a high expression of CD44 and low expression of CD24 (CD44high/CD24low) [22]. 
Thus, in the present work, we studied for the first time the capability of HA-targeted DTX and TPCS2a-
loaded NPs (HA@DTX/TPCS2a-NPs) to kill proliferating BC cells, cultured as monolayers, as well as 
CSC-enriched tridimensional BC spheres (e.g., mammospheres) [23] obtained from MCF-7 and triple 
negative MDA-MB-231 BC cells. The results showed that our HA-targeted DTX/TPCS2a 

nanoformulation is more effective than monotherapies in: (i) killing proliferating BC cells; (ii) 
reducing their stemness and self-renewal capacity; (iii) reducing the total numbers of BCSCs. 
  



Cancers 2020, 12, 278 3 of 16 

 

2. Results 

2.1. NP Preparation and Characterization 

In preliminary experiments we observed that MCF-7 cells are less sensitive to treatment with 
free DTX (IC50 0.134 μg/mL) compared to MDA-MB-231 cells (IC50 0.016 μg/mL) (Tables S1, S2, and 
[16]). In addition, it is well known that in tridimensional cell cultures and aggregates (e.g., 
mammospheres) the drug accumulation inside the cells is generally reduced in comparison to 
monolayers [24]. On these premises, the 1:35 DTX/TPCS2a ratio inside NPs, that had been optimized 
for MDA-MB-231 cells, was modified by keeping un-altered the loading of TPCS2a and increasing that 
of DTX. Using the method already described in [16], we were able to prepare NPs containing 
DTX/TPCS2a with the 1:5 ratio. The properties of the new nanoformulation are reported in Table 1 
and compared with those of NPs loaded with a single drug (HA@DTX-NPs and HA@TPCS2a-NPs) 
used as controls. 

Table 1. Properties of NP formulationsa. HA@DTX/TPCS2a-NPs contain DTX and TPCS2a in the molar 
ratio 1:5; for HA@DTX/TPCS2a-NPs loaded with the drugs in the ratio 1:35 refer to our previous work 
[16]. 

Formulation Size a 
(nm ± SD) PI b ZP c 

(mV ± SD) 

DTX 
Actual loading 

(μg DTX/mg NPs) 

DTX 
EE d 
(%) 

TPCS2a 
Actual loading 

(μg TPCS2a/mg NPs) 

TPCS2a 
EE d 
(%) 

HA@DTX  163 ± 5 0.2 −33 ± 2 5.2 98 ± 3 - - 
HA@TPCS2a 208 ± 6 0.2 −32 ± 7 - - 25  97 ± 3 
HA@DTX/ 
TPCS2a 

205 ± 3 0.2 −37.2 ± 3 4.8 96 ± 4 24  95 ± 3 

a Data are expressed as mean ± S.D. of three independent experiments. b Polydispersity Index. c Zeta 
Potential. d Entrapment Efficiency. 

All the formulations showed drug entrapment efficiencies higher than 95%, sizes comprised in 
the 160–210 nm range, a polydispersity index (PI) of 0.2 and a high negative zeta potential, due to the 
presence of the negatively charged HA external layer. The release of the drugs from NPs was checked 
in cell culture medium enriched with 10% serum in order to reproduce the experimental conditions 
of in vitro cell studies. As demonstrated for HA@DTX/TPCS2a-NPs with a drug ratio 1:35 [16], in this 
novel formulation the release of the PS was slow, thus highlighting its strong association with NP. 
Concerning the chemotherapeutic, the 70% of entrapped DTX was released in 72 h, thus showing a 
fast burst effect in the first 6 h of incubation (Figure S1). 

2.2. CD44-Mediated Endocytosis Is Involved in the Cellular Uptake of NPs and Transported Drugs 

To assess the effective involvement of HA in enhancing specific drug uptake in CD44 over-
expressing cells, we first incubated monolayers of MDA-MB-231 (high CD44 expression) and MCF-7 
(low CD44 expression) cells for 2 h with 50 μg/mL of HA@TPCS2a-NPs. As shown in Figure 1a, the 
mean fluorescence signal of TPCS2a was significantly higher in CD44 over-expressing MDA-MB-231 
cells with respect to MCF-7. Furthermore, in the competition experiment carried out with cells 
exposed to an excess of free HA, to saturate CD44 receptors before NP addition, we estimated that at 
least one third of the PS was effectively taken up by receptor-mediated endocytosis of NPs. Thus, 
HA-NPs can be used as carriers to improve drug uptake in CD44+ cells with an efficiency related to 
the expression level of the receptor. The increase of the incubation time to 24 h and the NP dose did 
not affect the higher PS accumulation in MDA-MB-231 cells with respect to MCF-7 cells (Figure 1b). 
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Figure 1. CD44-mediated endocytosis of HA@TPCS2a-NPs. (a) Uptake of HA@TPCS2a-NPs (50 μg/mL 
NPs) in MDA-MB-231 and MCF-7 cells after 2 h of incubation at 37 °C in medium with or without 10 
mg/mL of free HA. (b) Concentration-dependent uptake of HA@TPCS2a-NPs in MDA-MB-231 and 
MCF-7 cells after 24 h of incubation at 37 °C. Data are expressed as means ± SD of at least three 
independent experiments, carried out in triplicate; * p < 0.05, ** p < 0.001 (Student’s t test). 

2.3. Combination Therapy Using HA@DTX/TPCS2a-NPs Is Effective Toward Differentiated MCF-7 Cells 

In a previous work [16], we reported that the combination of DTX-chemotherapy and TPCS2a-
PDT produced synergistic killing of differentiated CD44 over-expressing HeLa and MDA-MB-231 
cells. Here we found that the analysis, according to the Chou and Talalay method [25], of the viability 
of MCF-7 cells (Figure 2a) treated with the HA-NPs co-loaded with the 1:35 DTX/TPCS2a molar ratio 
revealed antagonism (Figure 2b, blue line, CI > 1: antagonism) instead of synergism. The antagonistic 
interaction, very likely correlates with: (i) lower sensitivity to DTX of MCF-7 in comparison to the 
previously used cell lines and consequently the need to increase the loading of DTX inside NPs, and 
(ii) scarce NP internalization because of low contribution of CD44-mediated uptake, with respect to 
MDA-MB-231 cells. These hypotheses are supported by the data of Figure 2b showing that when the 
DTX/TPCS2a ratio was increased to 1:5, synergism between PDT and chemotherapy was observed 
(red curve, CI < 1: synergism) also in MCF-7 cells. 

 
Figure 2. Cytotoxicity of single and combined treatments in differentiated MCF-7 cells cultured as 
monolayers. (a) Dose-response curves of cells incubated for 24 h with single drugs or their 
combination loaded in HA-NPs and irradiated with 1 J/cm2 of red light (600–800 nm) when PDT was 
part of the treatment. After additional 24 h in drug-free medium, cell viability was measured with the 
MTS assay. Total drug concentration is referred to DTX + TPCS2a concentration. Data are expressed 
as mean percentage ± SD of at least three independent experiments, carried out in triplicate. (b) Plots 
of combination index (CI) vs. fraction affected (Fa) relative to cells treated with HA@DTX/TPCS2a-NPs 
loaded with DTX and TPCS2a in the 1:35 (blue) or 1:5 (red) molar ratio. 
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As visible in the drug-response curves in Figures 2a and S2, and considering the Dm (or IC50) 
values of Table S1, the killing efficiency of PDT alone using HA@TPCS2a-NPs was significantly 
reduced with respect to that of free TPCS2a as a consequence of the reduced PS uptake (Figure S3). 

2.4. Combination Therapy Using HA@DTX/TPCS2a-NPs Is Effective in Reducing Stemness Capacity and 
Cancer Stem Cell Population in Mammospheres 

MCF-7 and MDA-MB-231 cells were selected because of their different expression profile of the 
common BCSC markers CD44 and CD24, when cultured as monolayers or tridimensional 
mammospheres. In fact, while in adherent monolayered MCF-7 cells the CD44high/CD24low population 
(e.g., BCSC population) represents only 1.7%, in MDA-MB-231 almost 93% of cells show BCSC-like 
phenotype (Figure S4, left). The CD44high/CD24low population significantly increased in the 
mammospheres of first generation (about 6%) formed from MCF-7 cells and lined up at 29% of the 
cells in the mammospheres of second generation (Figure S4, right). Differently, almost 100% of MDA-
MB-231 cells derived from mammospheres were CD44high/CD24low. The mammosphere formation 
efficiency (MFE) was used as an indicator of stem cell activity and self-renewal capacity after single 
treatments, PDT or chemotherapy, or combination of the two using HA-NPs [26]. As explained in 
detail in section 4 (Materials and Methods), we measured MFE of first generation mammospheres 
generated from cells cultured and treated in monolayers (protocol 1), as well as MFE of second 
generation mammospheres generated from cells of the first generation which had been treated with 
PDT or chemotherapy or their combination (protocol 2), delivering drugs exclusively with HA-NPs. 
It is worth to note that for the combined treatment with HA@DTX/TPCS2a-NPs of monolayered cells 
(protocol 1), we selected the drug ratio that produced the best synergism in the individual cell line, 
namely 1:35 for MDA-MB-231 [16] and 1:5 for MCF-7, while for the treatment of first generation of 
mammospheres of both cell lines (protocol 2), the 1:5 drug ratio was used as indicated by preliminary 
experiments. As shown in Figure 3a, the MFE of MDA-MB-231 cells from monolayers exposed to 
combination therapy using HA@DTX/TPCS2a-NPs was significantly lower than that of the cells 
exposed to PDT or chemotherapy alone, indicating higher efficiency in reducing the numbers of 
formed spheres. On the contrary, no clear differences were observed in MCF-7 line between DTX 
alone and combined treatments (Figure 3c). Of note, MDA-MB-231 stemness potential was 
significantly higher if compared to that of MCF-7 cells treated with comparable drug doses. As an 
example, while MCF-7 cells treated with PDT following incubation with 0.25 μg/mL TPCS2a-loaded 
in HA-NPs lost almost completely their capacity of re-propagating as spheres, MDA-MB-231 cells 
treated with the same dose of PDT exhibited only a slight reduction of MFE (about 20%) with respect 
to untreated cells. 

Quite different MFEs were measured when the treatments were applied to first generation 
mammospheres (Figure 3b,d), as exemplified also in the images of MDA-MB-231 and MCF-7 
mammospheres treated with equivalent drug concentrations (Figure S5). Indeed, with both MDA-
MB-231 (Figure 3b) and MCF-7 (Figure 3d) cells a significantly lower efficiency to form second 
generation mammospheres was measured using HA@DTX/TPCS2a-NPs with respect to single 
therapies. Moreover, while in MCF-7 we were able to completely abolish sphere formation even with 
single therapies, in MDA-MB-231 only treatment with HA@TPCS2a-NPs or HA@DTX/TPCS2a-NPs 
almost completely abolished the ability to form spheres. To confirm that the significant reduction of 
forming spheres capacity after treatments correlated with an effective reduction of the CSC 
populations within treated mammospheres, we measured also ALDH activity, a marker to identify 
BCSCs [27]. As shown in the summary graphs of Figure 4, BCSC population slightly increased from 
first to second generation in untreated MCF-7 mammospheres (4% and 4.9%) while it was the same 
in MDA-MB-231 cells (7.7% and 7.2%). In any case, BCSC population was significantly reduced after 
HA-NP treatments in both cell lines, even if a different extent of CSC reduction was measured. In 
MDA-MB-231 cells treated with the highest drug doses considered (e.g., 0.02 μg/mL DTX, 0.1 μg/mL 
TPCS2a), we were able to reduce CSCs by about 2.5, 7, and 14-folds using HA@DTX-NPs, HA@TPCS2a-
NPs and HA@DTX/TPCS2a-NPs, respectively, with respect to untreated second generation 
mammospheres. Similarly, the same doses of drugs delivered in HA-NPs, determined CSC reduction 
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in MCF-7 by about 2.5, 5, and 8-times. In agreement with the results on the MFE (Figure 3), the less 
effective treatment was DTX-chemotherapy alone, while its combination with PDT was the best 
option against BCSCs, since in both cell lines we were able to almost completely eradicate this small 
but relevant cell population. 

The results on ALDH activity in MCF-7 cells agreed with the results on the BCSC population 
obtained by CD44 and CD24 immunostaining and flow cytometry analyses (Figure S6). Measuring 
the BCSC population in the second generation mammospheres by this method led to higher 
percentages than those measured by the ALDEFLUOR assay, but even so MCF-7 showed a 4.5, 5.5, 
and 6-folds reduction of CSC percentage, with respect to untreated spheres, after treatments with 
HA@DTX-NPs, HA@TPCS2a-NPs, HA@DTX/TPCS2a-NPs, respectively, at the DTX dose of 0.02 μg/mL 
and the TPCS2a dose of 0.1 μg/mL. The treatments with these drug doses decreased the percentages 
of CSC from 28.6%, of untreated second generation mammospheres, to values of 6.6%, 5.05%, and 
4.6%, after incubation with HA@DTX-NPs, HA@TPCS2a-NPs and HA@DTX/TPCS2a-NPs, 
respectively, that are similar or slightly lower than the percentage measured in the untreated first 
generation mammospheres (5.73%). 

 
Figure 3. Mammosphere formation efficiency (MFE) after HA-NPs treatments. Percentage MFE 
measured in first generation mammospheres generated from MDA-MB-231 (a) and MCF-7 (c) 
monolayered cells incubated for 24 h with HA@DTX-NPs, HA@TPCS2a-NPs and HA@DTX/TPCS2a-
NPs, irradiated with 1 J/cm2, and re-seeded in non-adherent conditions to allow formation of spheres 
(protocol 1). Percentage MFE measured in second generation mammospheres generated from first 
generation mammospheres of MDA-MB-231 (b) and MCF-7 (d) exposed to drug-loaded NPs for 24 h, 
irradiated with 1 J/cm2, and re-seeded in non-adherent conditions (protocol 2). MFE was evaluated 
after 7 and 4 days from re-seeding for MCF-7 and MDA-MB-231, respectively. Data are expressed as 
mean ± S.D. of at least two independent experiments, carried out in triplicate; * p < 0.05 (one-way 
ANOVA, Bonferroni’s correction). 
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Figure 4. ALDEFLUOR assay in MCF-7 (a) and MDA-MB-231 (b) cells. Percentages of ALDH positive 
cells (a,b) and exemplificative flow cytometry plots (c) measured in first and second-generation 
mammospheres treated with drugs in HA-NPs. First generation mammospheres were incubated for 
24 h with HA-NPs, irradiated with 1 J/cm2 of red light and re-seeded in non-adherent conditions to 
allow formation of II-generation spheres. Seven (MCF-7) or 4 (MDA-MB-231) days after the reseed, 
the population of ALDHhigh cells was evaluated by gating the ALDHhigh cells, (green population and 
percentages) whose fluorescence in flow cytometry plots (DEAB−) exceeded that of the negative 
controls (DEAB+) stained with the ALDH inhibitor DEAB to control background fluorescence. Flow 
cytometry plots are referred to mammospheres treated with drug doses of 0.02 μg/mL DTX, 0.1 
μg/mL TPCS2a, 0.12 μg/mL DTX + TPCS2a. Data are expressed as mean ± S.D. of at least two 
independent experiments; * p < 0.05 (one-way ANOVA, Bonferroni’s correction). 

2.5. CD44 Targeting Capability of HA@NPs in Mammospheres 

The data reported in Figure 4 indicate that the reduction of BCSC population is slightly more 
pronounced in MDA-MB-231 cells with respect to MCF-7, especially following treatments with 
HA@TPCS2a-NPs and HA@DTX/TPCS2a-NPs. We made the hypothesis that this stronger reduction 
could be correlated with an increased NP uptake mediated by HA in CD44 over-expressing MDA-
MB-231 mammospheres with respect to MCF-7. Thus, we incubated first generation mammospheres 
with 50 μg/mL HA@TPCS2a-NPs (TPCS2a dose 1.25 μg/mL) for 2 or 24 h and then evaluated the TPCS2a 
fluorescence by confocal microscopy. As visible in the confocal images acquired in the median plane 
as well as maximum projections shown in Figure 5, the uptake of NPs after 2 h of incubation was 
significantly higher in MDA-MB-231 with respect to MCF-7 mammospheres, as indicated by the 
bright red fluorescence signal of TPCS2a. 

As confirmed also in the fluorescence intensity 3D plot reconstructions, the PS uptake was 
significantly increased in CD44-overexpressing mammospheres, even if mostly confined to the more 
external cell layers. Notably, when the incubation time was prolonged up to 24 h (Figure 5), TPCS2a 
uptake significantly increased also in MCF-7 mammospheres, very likely due to the prevailing of 
non-specific endocytosis, with respect to HA-mediated uptake of NPs, prolonging the time. 
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Figure 5. Uptake of HA@TPCS2a-NPs in MDA-MB-231 and MCF-7 first generation mammospheres 
incubated for 2 or 24 h with 50 μg/mL HA@TPCS2a-NPs (TPCS2a dose 1.25 μg/mL). Column 1: Bright 
field images; Column 2: TPCS2a fluorescence at the equatorial plane of mammospheres; Column 3: 
Three-dimensional reconstruction of TPCS2a fluorescence distribution and intensity in the equatorial 
plane of the mammospheres; Column 4: Maximum projection obtained from the superimposition of 
20 different acquired focal planes. Scale bar unit in the images is μm. 

3. Discussion 

Breast cancer is one of the major causes of death worldwide for women, especially in the case of 
triple negative BC (TNBC), characterized by poor prognosis and survival due to ineffectiveness of 
hormonal therapies. Moreover, the aggressive phenotype of this type of cancer is mainly attributed 
to drug-resistance phenomena and the presence of BCSCs, responsible for the high rate of metastasis 
formations and tumor relapse after treatments. While the origin and role of BCSC is not completely 
understood [2], evidence suggests that CSCs derived from the transformation of normal stem cells 
are responsible for tumor’s aggressiveness higher than that of CSC derived from progenitor cells. 
Different therapeutic approaches are being developed and proposed, to precisely target and eradicate 
this small but difficult-to-kill cell population. We have previously demonstrated that TPCS2a 
delivered through HA-functionalized polymeric NPs exerts markedly higher photosensitizing 
activity in TNBCs [16]. Interestingly, when TPCS2a-PDT was combined to DTX-chemotherapy, by 
encapsulating the two drugs at optimal ratio within the same NP, a high synergism was found, and 
TNBC MDA-MB-231 cells were efficiently killed with DTX and TPCS2a doses, respectively, 11- and 6-
fold lower than those used in monotherapies for obtaining comparable effects. Nevertheless, very 
few examples are reported on the use of DTX nanoformulations for the eradication of differentiated 
cancer and CSCs [28–30]. To the best of our knowledge, this is the first time that DTX-chemotherapy 
is proposed in combination with PDT to fulfill this scope. 
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The increase of internalized drugs due to CD44 targeting by the HA coating of NPs coupled with 
the concomitant slow release inside the cells were identified as key factors for the increased 
performances of the nanoformulation with respect to free drugs. Since many BC cells and BCSCs are 
characterized by high expression of CD44 while others show low expression, we decided to select 
MDA-MB-231 as CD44+ and adenocarcinoma MCF-7 as CD44− cells, respectively (Figure S4), to study 
receptor-mediated endocytosis of NPs. As shown in Figure 1, the different level of CD44 expression 
in these two cell lines correlated with the different extent of cellular uptake of HA-NPs, indicating a 
clear contribution of HA targeting and CD44-mediated delivery, leading to increased PS 
internalization in MDA-MB-231 with respect to MCF-7 cells (Figure 1b). This is well supported by 
the competition experiments (Figure 1a) demonstrating that cell pre-incubation with an excess of free 
HA to saturate CD44 receptors inhibited TPCS2a uptake to higher extent in MDA-MB-231 compared 
to MCF-7 as expected based on the expression level of the receptor. Similarly, Gao and co-workers 
reported the CD44-mediated uptake of the PS chlorin e6 loaded in HA nanocomplexes in CD44+ HT-
29 cells in vitro and in HT-29 tumor bearing mice [31]. The targeting capability of HA-NPs was 
observed also in mammospheres (Figure 5), a 3D in vitro culture model enriched of BCSCs. In line 
with the fact that in the first generation of mammospheres about 97% of MDA-MB-231 cells were 
CD44high/CD24low while only approximately 6% of MCF-7 showed this expression profile (Figure S2), 
after 2 h incubation, the uptake of HA@TPCS2a in MDA-MB-231 was significantly higher than in MCF-
7 cells (Figure 5). As found with other tridimensional in vitro models and other PSs [14,32], TPCS2a 
localized mainly in the more external cells layers of the mammospheres, and penetrated deeper at 
increasing incubation time. Weak penetration into the core of MCF-7 mammospheres was observed 
also with coumarin-loaded HA hybrid NPs [33]. 

To study the efficacy of the combination of DTX-chemotherapy and TPCS2a-PDT in reducing cell 
stemness and to effectively eradicate BCSCs, we used the mammosphere-forming assay, as a 
convenient in vitro approach to estimate BC cell potential to behave like “stem cells” or ”tumor 
initiating” cells (TICs) [34]. Toward this aim, we have determined MFE of cells that had been treated 
as monolayers (protocol 1) or as mammospheres of first generation (protocol 2). As protocol 1 is 
concerned, we have preliminarily determined the impact of chemotherapy/PDT combination in 
CD44low MCF-7 cells cultured as monolayers. Differently from monolayers of MDA-MB-231 cells 
previously studied [16], HA-NPs gave synergistic killing of MCF-7 exclusively if DTX loading inside 
NPs was increased (Figure 2b), thus modifying DTX:TPCS2a ratio from 1:35 to 1:5. It is worth to note, 
that the increased drug ratio did not affect NP stability and drug entrapment efficiency (>95% DTX 
and TPCS2a, see Table 1). When we treated cells cultured as monolayer and then re-propagated them 
as mammospheres, we observed a clear decrease of the MFEs in both cell lines and, especially in 
MDA-MB-231, the reduction with combined with respect to single treatments was remarkable (Figure 
3a,c). In fact, an MFE higher than 50% was maintained when MDA-MB-231 cells were exposed to 
monotherapies while the same drugs co-delivered through HA-NPs lowered MFE to less than 50%. 
Generally, the MFE measured in MCF-7 was significantly lower than that observed in MDA-MB-231, 
but lower was also the impact of combination therapy on MFE reduction. It can be speculated that a 
correlation occurs between the cytotoxicity induced in monolayered cells and the reduction of sphere-
forming capacity. Interestingly, analyzing cell viability and MFE values in the two cell lines we 
observed that, while in MCF-7 sub lethal doses (e.g., 0.05 μg/mL TPCS2a, 0.01 μg/mL DTX; cell 
viability around 90–80%) of drugs decreased MFE to less than 40%, in MDA-MB-231 cells the same 
extent of reduction of sphere-forming capacity was observed with drug doses close to IC50 (Table S2 
and [16]) (e.g., 0.5 μg/mL TPCS2a, 0.014 μg/mL DTX). The higher stemness potential demonstrated by 
survived MDA-MB-231 cells very likely correlates with the intrinsic high metastatic potential of triple 
negative cells, while the adenocarcinoma MCF-7 cell line is considered non metastatic [35]. It has been 
also reported that tumor aggressiveness and metastatic potential are associated with elevated ALDH 
expression, especially in the case of TNBC [36]. This evidence is confirmed in our models by the 
higher percentage of ALDH+ cells counted in untreated mammospheres of MDA-MB-231 with respect 
to MCF-7 (Figure 4) and, is in agreement with the observations of Laranjo and co-workers that 
reported lower ALDH expression in MCF-7 mammospheres with respect to those derived from 
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TNBC HCC1806 cells [37]. It must also be pointed out that the higher IC50 for DTX measured in MCF-
7 monolayers with respect to MDA-MB-231 (Tables S1 and S2) does not correlate with a higher self-
renewal/stemness capacity. 

Using protocol 2, we treated first generation mammospheres and measured MFEs in the second 
generation. Basically, by adopting this protocol we tried to simulate the in vivo tumor environment 
by reproducing the tridimensional arrangement and the BCSC enrichment. As for the first generation 
mammospheres obtained from cells treated in monolayer, lower MFE values were measured for 
MCF-7 with respect to MDA-MB-231 cells, at the same drug doses (Figure 3b,d). The combination 
therapy was clearly more efficient than each single therapy in MCF-7; this was less evident in MDA-
MB-231 mammospheres because of high and low sensitivity of the CSC to PDT and DTX, respectively. 
The high MFE measured following HA@DTX-NP therapy is very likely in agreement with a more 
specific activity of taxanes toward non-BCSCs rather than toward BCSCs [28,29,38]. In this context, 
Zhang and colleagues reported that in xenografts of MDA-MB-231Luc treated with DTX (dose 
approximately IC50), the MFE of isolated cells was even higher than that of cells that had been treated 
with the vehicle alone, due to an increase of TICs after the treatment [39]. The same DTX-treated cells 
re-implanted into mice gave rise to tumors whose size was increased by 50% with respect to those 
derived from cells treated with vehicle only. On the other hand, TPCS2a-based PDT seems to target 
more indistinctly all BC populations. Accordingly, Usacheva and coworkers reported an efficient 
cytotoxicity of methylene blue (MB) NP-mediated PDT toward proliferating and BCSCs, under 
normoxic and hypoxic conditions [40]. In addition, in a very recent in vitro study, Abrahamse et al. 
reported the efficacy of aluminum phthalocyanine (AlPcSmix)-based PDT for killing not only the bulk 
cervical cancer cell population but also the CSC population, isolated from HeLa cultured cells [41]. 
The reduction of MFE that we observed in second generation mammospheres might correlate with a 
decrease in the numbers of BCSCs or BCSC-like cells in HA-NP treated first generation 
mammospheres. Accordingly, ALDEFLUOR assay results (Figure 4) showed a significant correlation 
with MFE data, since a significant decrease of ALDH+ (e.g., BCSCs) cells was observed. Of note, using 
HA@DTX/TPCS2a−NPs we were able to completely eradicate the BCSC population in both cell lines, 
using the total drug dose of 0.12 μg/mL. Similarly, in MCF-7 cells, BCSC population identified by 
CD44 and CD24 immunostaining is reduced to the level of untreated first generation after treatments 
(Figure S6). BCSC population decrease/eradication using HA-NPs loaded with DTX/TPCS2a 
combination represents the key finding of the present work. In fact, we have demonstrated that DTX-
resistance found especially in CSC-enriched MDA-MB-231 mammospheres could be eliminated by a 
combined PDT treatment. On the other hand, the same combination demonstrated superior efficacy 
than each single therapy also toward proliferating/differentiated BC cells. Of note, those BC cells that 
survived to combination therapy possess significantly lower self-renewal, stemness potential and 
sphere-forming capacity. 

4. Materials and Methods 

4.1. Chemicals and Reagents 

TPCS2a was provided by PCI Biotech AS (Oslo, Norway). DTX was purchased from LC 
Laboratories (Woburn, MA, USA). Poly (D,L-lactide-co-glycolide) (PLGA) (50:50 Resomer RG 502H 
inherent viscosity 0.16−0.24 dL/g) was purchased from Boehringer Ingelheim (Ingelheim am Rhein, 
Germany). PEI (MW = 10–25 kDa branched) and Poloxamer 188 (Pluronic® F68) were purchased from 
Sigma-Aldrich (St. Louis, MI, USA). Acetonitrile and acetone were purchased from Carlo Erba 
Reagenti (Milan, Italy). Hyaluronic acid (HA, MW < 10 kDa) was a kind gift of Magaldi Life S.r.l. 
(Salerno, Italy). Dulbecco’s modified Eagle’s medium (DMEM), DMEM/F12 medium, fetal bovine 
serum (FBS) and B27 mix were purchased from Life Technologies (Milan, Italy). 
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4.2. Preparation and Characterization of NPs 

HA@DTX/TPCS2a-NPs co-loaded with DTX and TPCS2a were prepared by a layer-by-layer 
deposition method as previously described by us [13,16]. Briefly, DTX-NPs were prepared by solvent 
diffusion of an organic phase (10 mg of PLGA and 50 μg or 7.5 μg of DTX in 2 mL of acetone, for 
obtaining the DTX/TPCS2a ratio 1:5 and 1:35, respectively) in an aqueous phase (4 mL of water added 
with Pluronic F68 0.1%). After solvent evaporation, the dispersion was split into four Eppendorf 
tubes and centrifuged at 5000 × g for 15 min. NPs in each Eppendorf were coated with 125 μL of a 
PEI water solution (1 mg/mL), re-centrifuged at 2800 × g for 15 min, and then 25 μL of a TPCS2a water 
solution (0.4 mg/mL) was added. Thereafter, NPs were coated with a layer of HA through the 
addition of 100 μL of a HA water solution (1 mg/mL) in each Eppendorf tube maintaining a constant 
interval of 15 min between each addition. The NP preparations were freeze-dried for 24 h and the 
recovery yield of the production process was evaluated on an aliquot of NPs by weighting the solid 
residue. Results of the quantification are expressed as the ratio of the actual NP weight to the 
theoretical polymer plus drug weight × 100. Unloaded NPs, HA@DTX-NPs and HA@TPCS2a-NPs 
were prepared for control experiments. NP characterization was carried out as described in ref. [16]. 

4.3. In Vitro Release of TPCS2a and DTX 

The release of TPCS2a was followed at 37 °C; 1 mg of NPs was dissolved in 1 mL of DMEM added 
with 10% FBS. At predetermined time intervals, the sample was centrifuged at 17000 × g for 20 min. 
TPCS2a release was assessed in the supernatant by spectrophotometry at wavelength of 414 nm. A 
TPCS2a calibration curve in the range 0.05–5 μg/mL was constructed in the release medium. The 
results from three independent experiments are expressed as % release vs. time ± SD. Release of DTX 
was assessed in 10 mM phosphate buffer saline (PBS) at pH 7.4 containing NaCl (137 mM) and KCl 
(2.7 mM) by a dialysis method. Four mg of NPs were dispersed in 0.5 mL DMEM + 10% FBS and 
placed in a dialysis bag Spectra/Por® (MWCO = 3500 Da)(Thermo Fisher Scientific, Waltham, MA, 
USA). The sample was plunged in 3 mL of PBS (sink condition) and kept at 37 °C up to 72 h. At 
selected time intervals, 1 mL of release medium was withdrawn and replaced with an equal volume 
of fresh medium. As control, release profiles of DTX dissolved in EtOH and added of DMEM + 10% 
FBS were assessed by HPLC as previously reported in [16]. Results are expressed as release % vs. 
time ± SD of three experiments. 

4.4. Cell Lines 

MCF-7 and MDA-MB-231 human breast cancer cells were purchased from American Type 
Culture Collection (ATCC, Manassas, VA, USA). The cells were grown in DMEM with GlutamaxTM  
(Life Technologies, Milan, Italy) supplemented with 10% heat inactivated FBS, 100 U/mL 

streptomycin, and 100 μg/mL penicillin G and maintained at 37 °C under a humidified atmosphere 
containing 5% CO2. 

4.5. Uptake of HA@TPCS2a-NPs in Monolayered Cancer Cells 

To study the role of CD44 in the uptake of NPs, 5 × 104 cells were grown in 24-well plates for 24 
h and incubated for 2 h with 50 μg/mL of NPs. In competition experiments, some samples were pre-
incubated for 1 h with 10 mg/mL of free HA in order to saturate the CD44 receptor binding sites 
before NP addition. At the end of the incubation time, the cells were washed twice with Versene, 
(Life Technologies, Milan, Italy) detached from the plates with trypsin that was neutralized by the 
addition of FBS. Cells were centrifuged and resuspended in Versene before measuring TPCS2a 
fluorescence using a BD FACSCantoTM II flow cytometer (Becton Dickinson, San Jose, CA, USA). A 
blue laser at 488 nm was used to excite TPCS2a and its fluorescence was detected at wavelengths 
longer than 670 nm (PerCP channel); for each sample 105 events were acquired and analyzed using 
the FACSDiva software. The uptake of TPCS2a as a function of NP concentration was measured in 
cells seeded and handled as described above and incubated for 24 h with increasing concentrations 
of HA@TPCS2a-NPs. 
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4.6. Cytotoxicity and Determination of Combination Index (CI) 

Cytotoxicity experiments in MCF-7 cells were performed as described in [16] for MDA-MB-231 
cells and the reduction of cell viability was measured with the MTS assay after single or combined 
treatments. The treatments were carried out with HA@NP-loaded drugs and free drugs for 
comparison. Briefly, 8000 cells/well were seeded in 96-well plates and, after 24 h of cell growth, the 
medium was replaced with fresh medium containing increasing concentrations of TPCS2a or DTX or 
their combination delivered in free form or entrapped in NPs (DTX/TPCS2a ratio 1:35 and 1:5, w/w). 
Cell viability was measured after 24 h of drug incubation in the dark (time point 24 h) as well as after 
an additional 24 h in which the cells were kept in drug-free medium (time point 24 + 24 h). For photo-
toxicity experiments (PDT), cells were seeded and treated as described above, and at the end of the 
24 h of drug incubation, cells were washed twice with PBS Ca2+ and Mg2+ and irradiated in PBS with 
a total fluence of 1 J/cm2 of red light (600−800 nm) emitted from a Waldmann PDT 1200 lamp 
(Waldmann Medizintechnik, Villingen-Schwenningen, Germany). The power density was 15 
mW/cm2 as measured with the radiometer IL 1700 (International Light, Newburyport, MA, USA). 
Immediately after irradiation, the cells were brought back to the incubator after the replacement of 
PBS with fresh medium. Cell viability was measured using the MTS test after additional 24 h 
(phototoxicity; time point 24 + 24 h). Furthermore, in order to assess if the interaction of DTX-
chemotherapy and TPCS2a-PDT resulted in a synergic effect, CI values were calculated using the 
CompuSyn software (ComboSyn Inc., Paramus, NJ, USA), based on the Chou and Talalay method 
[25]. With the experimental data obtained from the cell viability curves, we calculated the fraction 
affected (Fa) values for each drug concentration tested and analyzed the data on the Compusyn 
software as already described [16]. For each drug and drug combination, the software calculated also 
the drug concentration that inhibits cell survival by 50% (IC50 or Dm value).  

4.7. Generation and Treatment of Mammospheres 

MCF-7 and MDA-MB-231 cells were trypsinized from T-75 cm2 flasks and then plated in 24-well 
ultralow attachment flat-bottom plates (Corning, New York, NY, USA) at a density of 5000 and 
100,000 viable cells/mL, respectively. Seeding was performed in serum-free DMEM-F12 
supplemented with B27 (1:50), 20 ng/mL epidermal growth factor (EGF), 20 ng/mL basic fibroblast 
growth factor (bFGF) (Peprotech, London, UK), and 5 μg/mL insulin (Sigma Aldrich). MCF-7 and 
MDA-MB-231 cells were grown for 7 and 4 days, respectively, to form the first generation of 
mammospheres. To re-propagate the second generation of mammospheres, the first generation 
mammospheres were collected, gently centrifuged (123 × g, 10 min) and dissociated into single cells 
by using 0.25% trypsin/EDTA (Life Technologies). The dissociated cells were re-seeded as indicated 
for the first generation mammospheres in order to obtain the corresponding second generation. The 
number of mammospheres formed in each generation was evaluated by counting the number of 
spheres in the images acquired by bright field microscopy (DMI4000 Leica microscope, Wetzlar, 
Germany). The mean diameter of each mammosphere was calculated with the LAS AF Lite software, 
and spheres with a diameter below 100 μm were excluded from counting. For assessing the effects of 
single and combined therapies using HA-NPs toward BCSCs two different treatment protocols were 
used. In protocol 1, cells were seeded and treated in monolayer and, immediately after treatment, 
were re-seeded to form first generation mammospheres. Thus, according to this protocol, cells (5 × 
105) were seeded in 60 mm tissue culture dishes and, after 24 h of growth, were treated with DTX 
or/and TPCS2a delivered in HA-NPs. At the end of the incubation, cells were irradiated in PBS (1 J/cm2 
of red light) and, immediately after irradiation, were detached from plates and re-seeded in ultra-low 
attachment plates to allow the formation of the first generation mammospheres. Mammosphere 
formation efficiency (MFE) was calculated as the number of spheres counted in the first generation, 
divided by the number of seeded cells, and expressed as percentage means ± SD. In protocol 2, the 
first generation mammospheres were formed and incubated for 24 h, directly in ultra-low attachment 
plates, with DTX or/and TPCS2a delivered in HA-NPs. At the end of the incubation time, the spheres 
were irradiated with 1 J/cm2 of red light, when PDT was part of the treatment, and, immediately after 
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irradiation, were dissociated and re-seeded in non-adherent condition to allow the formation of 
second-generation mammospheres.  
Mammosphere formation efficiency (MFE) was calculated as the number of spheres counted in the 
second generation, divided by the number of cells seeded, and expressed as percentage (means ± SD). 

4.8. Analysis of BCSC Population in Mammospheres 

CD24 and CD44 immunostaining: First or second generation mammospheres were collected and 
enzymatically dissociated into single cells; 105 cells were collected, washed twice with cold PBS, and 
kept in ice. In parallel, the same number of cells was collected from monolayer cells routinely cultured 
on T-75 cm2 flasks. After a second step of washing, a combination of monoclonal antibodies against 
human CD44 (FITC-conjugated) and CD24 (PE-conjugated) (BD Biosciences, San Diego, CA, USA) 
was added to the cell suspension and incubated at 4 °C in the dark for 30–40 min following 
manufacturer’s protocol. Labeled cells were washed with PBS to eliminate unbound antibodies and 
analyzed by flow cytometry to count the percentage of CD44high/CD24low cells. 

4.9. Aldehyde Dehydrogenase (ALDH) Activity Assay 

ALDH enzymatic activity in first- and second-generation mammospheres was measured using 
AldeFluor Kit (StemCell Technologies, Durham, NC, USA), following the manufacturer’s protocol. 
Briefly, mammospheres were dissociated into single cells and cells were then re-suspended in 
Aldefluor Buffer and stained with activated Aldefluor Reagent. As control for background 
fluorescence, for each sample, 500 μL of cell suspension were transferred in a tube containing 
diethylaminobenzaldehyde (DEAB), a specific inhibitor of ALDH. After incubation for 40 min at 37 
°C, cells were centrifuged at 250 × g for 5 min, re-suspended in 500 μL of Aldefluor Buffer, and 
analyzed with the flow cytometer. 

4.10. Uptake of HA@TPCS2a-NPs in Mammospheres 

First generation mammospheres were generated as described above and incubated for 2 or 24 h 
with 1.25 μg/mL of TPCS2a loaded in HA@ NPs (50 μg/mL). The localization of TPCS2a was evaluated 
by confocal microscopy (Leica SP5) by transferring the mammospheres from 24-well/plates to 35 mm 
cell imaging dishes (Ibidi, Gräfelfing, Germany) and washing them twice with PBS before 
visualization. Images were acquired from the top to the bottom of the mammosphere in about 20 
different focal planes (z-stack 10 μm). Furthermore, a 3D reconstruction of the distribution of the 
fluorescence signal in the equatorial plane of the mammospheres was obtained using the software 
ImageJ and a maximum projection image obtained by superimposition of 20 focal plains using the 
software LAS AF Lite (Leica). 

4.11. Statistical analysis  

The Primer software for biostatistics (McGraw-Hill, Columbus, OH, USA) was used for 
statistical analysis of the data. The data are expressed as means ± standard deviations (SD) for at least 
two independent experiments, carried out in triplicate. The difference between two groups of 
treatments was evaluated by Student’s t test while the differences between more than two groups of 
treatment was evaluated with one-way ANOVA test with the Bonferroni’s correction and was 
considered significant for p < 0.05. 

5. Conclusions 

In this work, we have reported the successful in vitro elimination of BCSCs using HA-targeted 
NPs developed for combining DTX-chemotherapy and PDT. HA-mediated uptake of NPs occurred 
in CD44high cells grown in adherent and 3D conditions thus demonstrating the capability to target 
also cancer stem-like cells in addition to differentiated cells overexpressing CD44. Interestingly, 
stemness potential and self-renewal capacity of CSC was strongly hampered when using 
HA@DTX/TPCS2a−NPs. The CSC reduction was significantly lower when cells monolayers or 
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mammospheres were treated with the combination in comparison to chemotherapy or PDT alone. 
This general trend was confirmed by evaluating the entity of the CSC population by various assays 
as measure of MFE, ALDH activity, and immunostaining. These results demonstrate that the co-
delivery of chemotherapeutics and PSs for PDT using well-designed NPs can potentiate the efficacy 
of cancer treatments by targeting and killing CSCs and stimulate future studies with HA-
nanoformulations especially with in vivo tumor models. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: Release of 
TPCS2a and DTX from HA@DTX/TPCS2a-NPs; Figure S2: Cytotoxicity of free drugs delivered in the respective 
standard solvents in differentiated MCF-7 cells cultured as monolayers; Figure S3: Intracellular uptake of TPCS2a 
in MCF-7 adherent cells; Figure S4: FACS representative plots of receptor profile (CD44/CD24) expression 
measured in MCF-7 and MDA-MB-231 cultured in adherent conditions or as mammospheres; Figure S5: 
Representative bright field images of MCF-7 and MDA-MB-231 second-generation mammospheres derived 
from first generation mammospheres treated with HA-NPs; Figure S6: CD44/CD24 receptor profiles in MCF-7 
mammospheres. Table S1: IC50 or Dm value calculated by the Compusyn software in MCF-7 cells exposed to the 
different DTX and/or TPCS2a formulations. Table S2: IC50 or Dm value calculated by the Compusyn software in 
MDA-MB-231 cells exposed to the different DTX and/or TPCS2a formulations. 
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